ИССЛЕДОВАНИЕ СВОЙСТВ ЗАТУХАНИЯ СОБСТВЕННЫХ КО-ЛЕБАНИЙ ЖЕЛЕЗОБЕТОНОЙ БАЛКИ

Столповский Г.А., канд.техн.наук, доцент, Нестеренко А.М., Романюк П.В. Оренбургский государственный университет

Введение

В нынешний период есть огромное число устройств и методов неразрушающего контроля (МНК), которые используются применительно к различным конструкциям и устройствам. Многие из них применяются с целью контроля и прогноза эксплуатационной надёжности зданий и сооружений. Особое место занимает оборудование и способы, нацеленные на обнаружение скрытых нарушений, которые невозможно зафиксировать при визуальном обследовании. Не меньшую важность представляют собой методы мониторинга.

Тем не менее, существующие подходы малоэффективны при анализе объёмных объектов: например, ультразвуковая дефектоскопия отличается большой трудоёмкостью из-за требований предварительной обработки исследуемой поверхности. Потребность формирования единого метода непрерывного контроля и локализации скрытых дефектов в строительных конструкций строительного объекта обосновывается многочисленными авариями (например, авария на Саяно-Шушенской ГЭС в 2009 г.)[1]. Развитие и повышение доступности информационных технологий также способствует внедрению постоянного инструментального наблюдения за наиболее ответственными и дорогостоящими зданиями и инженерными сооружениями [1].

Одним из подходов, позволяющих решить поставленную задачу, является контроль и анализ резонансно-волновых процессов в зданиях и сооружениях. Появление трещин и нарушений в элементах конструкции влечет за собой изменения их резонансно-волновых характеристик, в частности резонансных частот и поглощающих свойств. Об этом свидетельствует низкий коэффициент корреляции записей колебаний с разных частей конструкции при наличии трещины[1][2]. Относительно невысокая стоимость и низкая трудоёмкость эксплуатации сейсмологической аппаратуры создаёт предпосылки для исследования колебательных и волновых процессов в строительных конструкциях с целью использования в аппаратных комплексах для мониторинга технического состояния зданий и сооружений.

Инструментальное сейсмическое обследование и мониторинг состояния зданий выполняется в основном с помощью методик, которые можно разделить на три группы, различающиеся способом получения волновых полей и применяемыми схемами обработки [1]:

1. Искусственное возбуждение колебаний здания ударами разной силы по зданию и вне его. Основные недостатки связаны с получением идентичного воздействующего сигнала для накопления отклика; доступны лишь отдельные

части здания.

- 2. Воздействие на здание микросейсм и их регистрация на коротких профилях в здании с последующей корреляционной обработкой. Работы ориентированы на здания и лишь косвенно затрагивают свойства грунтов основания. Под микросейсмами понимают результат наложения сейсмических волн от локальных источников (других зданий, транспорта, электрических машин и т.д.) [3].
- 3. Использование в качестве источника, возбуждающего собственные колебания здания, постоянно присутствующих пульсаций атмосферного давления. Регистрируются одновременно пульсации давления и ветровые колебания здания.

Отсутствие универсального метода инструментального сейсмического обследования для контроля реальных строительных объектов создаёт необходимость исследования резонансно-волновых процессов в строительных конструкциях, а также разработки соответствующей методики для решения поставленных задач.

Цель работы — дополнить имеющиеся сведения о протекании колебательных процессов и распространении волн в строительных конструкциях.

Основные задачи — определить скорость ослабления интенсивности волны, прошедшей через трещиноватую область в материале строительной конструкции; выделить собственные частоты обследуемого объекта; предложить параметр, отражающий поглощающие свойства материала, и сравнить полученные значения для целого и нарушенного объектов исследования.

Материалы и методы

В качестве объекта исследования выбрана ж/б перемычка с размерами 120х140х1400. Два варианта перемычки: одна целая, без видимых нарушений, вторая – с трещиной (ширина раскрытия 3 мм). Армирование балки симметричное: продольное – 4А-IIIØ6, каркас – Вр-IØ3, S=200 мм. Необходимо отметить, что оценка влияния класса арматуры и бетона, а также процента армирования на скорость затухания свободных колебаний, является задачей для дальнейших исследований, которые не проводились в данной работе.

Регистрирующая аппаратура: регистратор «Байкал-8» с настройками частоты дискретизации 2000 и коэффициентом усиления G=1. Датчики – ёмкостные акселерометры компании Zetlab с чувствительностью ≈ 100 мB/ (м/с²) и диапазоном регистрируемых частот 0,1-500 Гц и велосиметры CM3-КВ с диапазоном 0,01-50 Гц.

Для исследования резонансно-волновых характеристик производится запись колебаний балок. Регистрирующие датчики устанавливаются на перемычку в точках по разные стороны от трещины и располагаются на одной прямой линии на одинаковом расстоянии от нарушенной зоны вдоль взаимно перпендикулярных осей Z, N, E (заданных соответственно по высоте, ширине и длине балки). Аналогичное расположение датчиков в эксперименте с целой перемычкой.

Для возбуждения колебаний в балках производятся удары в направлении заданных осей. Подобные удары являются «импульсной» нагрузкой, после приложения которой, система выводится из состояния равновесия и в ней устанавливаются свободные колебания с начальной скоростью, сообщённой системе импульсом. Сила удара влияет лишь на интенсивность свободных колебаний и длительность их затухания; частота же свободных колебаний системы и скорость их затухания не зависят от силы «импульса» [6]. Задача работы — определить скорость затухания и влияние нарушения на неё, следовательно, в данном случае идентичность ударов не является необходимым условием.

Рисунок 1 -Испытание нарушенной ж/б перемычки.

Рисунок 2- Испытание целой ж/б перемычки.

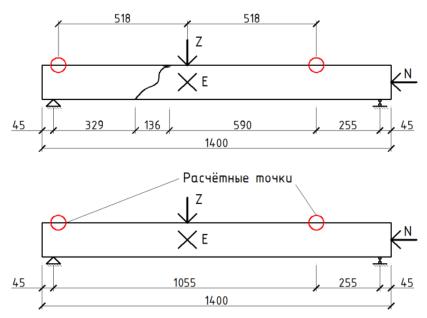


Рисунок 3- Расчётные схемы для испытаний ж/б перемычек.

Для количественной оценки влияния трещины на распространение упругой волны целесообразно использовать логарифмический декремент затухания. Он показывает, насколько быстро уменьшается амплитуда во времени. Логарифмический декремент затухания [4] - безразмерная величина, равная натуральному логарифму отношению двух амплитуд, следующих друг за другом через промежуток времени, равному периоду Т колебаний [4]. Значение периода Т в данном случае равно промежутку времени между соседними гребнями волны на отфильтрованной по определённой частоте сейсмограмме. Значение амплитуды для числителя — значение отсчёта из 1-ой сейсмограммы $A_1(t)$, полученной с 1-ой точки на конструкции; амплитуда для знаменателя — значение отсчёта со 2-ой сейсмограммы A₂(t+T), которая получена со 2-ой точки конструкции. Выбор значений, полученных с разных точек конструкции, позволяет оценить уменьшение амплитуды с расстоянием (расстояние между датчиками). При этом в расчёт принимались только отсчёты, имеющие значение по модулю выше принятого уровня шума, а также имеющие нулевое значение производной функции сейсмограммы по времени для выделения гребня. Таким образом, значения амплитуд в 1-ой и 2-ой сейсмограммах определяются по условию:

$$A_{1}(t) = y_{1}(t),$$

$$(1)$$

$$\text{при } \frac{dy_{1}}{dt} = 0 \text{ и } y_{1}(t) \in (-\infty; -a] \cup [a, +\infty)$$

$$A_{2}(t+T) = y_{2}(t+T),$$

$$\text{при } \frac{dy_{2}}{dt} = 0 \text{ и } y_{2}(t+T) \in (-\infty; -a] \cup [a, +\infty)$$

$$(2)$$

где: $A_1(t)$ — значение амплитуды по 1-ой сейсмограмме в момент времени $A_2(t+T)$ — значение амплитуды по 2-ой сейсмограмме в момент времени

t;

(t+T), Т — период отфильтрованной сейсмограммы, с;

 $y_1(t)$ — функция 1-ой сейсмограммы;

 $y_2(t+T)$ — функция 2-ой сейсмограммы;

а — пороговое значение амплитуды сейсмограмм (принятый уровень фонового шума), ниже которого расчёт не выполняется.

Графические изображения и схемы точек на сейсмограммах, значения в которых отбираются для расчёта логарифмического декремента затухания, приведены на рис. 4-5.

Составив отношения амплитуд, следующих друг за другом через промежуток времени, равный периоду Т колебаний, получим ряд значений логарифмического декремента затухания для расчёта по двум сейсмограммам. Тогда логарифмический декремент затухания рассчитывается как среднее арифметическое значений ряда [4]:

$$\delta = \frac{\sum_{1}^{n} \ln \frac{|A_{1,k}|}{|A_{2,k+1}|}}{n},$$
(3)

где: $A_{1,k}$ – значение k-ой амплитуды (отсчёта) по 1-ой сейсмограмме с 1-ой точки;

 $A_{2,k+1}$ — следующая через период T после $A_{1,k}$ амплитуда по 2-ой сейсмограмме со 2-ой точки;

n – количество расчётных точек.

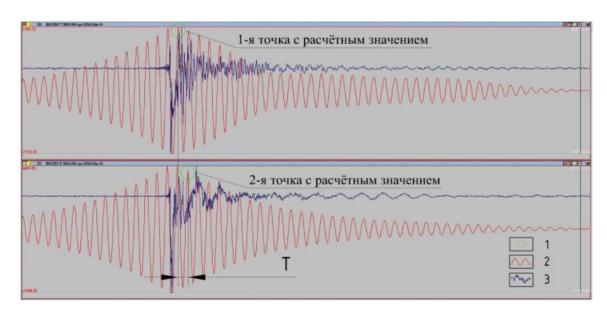


Рисунок 4 - К расчету логарифмического декремента затухания. Условные обозначения: 1 — расчётные точки-отсчёты с 0-ой производной; 2 — полосовой фильтр Баттерворта; 3 — сейсмограмма; Т — период колебаний по отфильтрованной сейсмограмме.

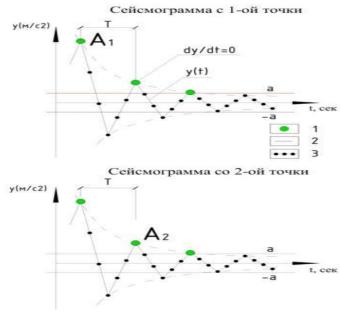


Рисунок 5 - Расчётные схемы для вычисления декремента затухания. *Условные обозначения*: 1 — расчётные точки-отсчёты с 0-ой производной; 2 — принятый уровень шума; 3 — линии сейсмограммы с точками-отсчётами.

Искусственное возбуждение колебаний балки вызывает на амплитудном спектре волнового процесса серию пиков, которые соответствуют собственным частотам основного тона и обертонов [1]. Собственные частоты определяются изгибной жёсткостью и напряженно-деформированным состоянием объекта [4]. Записи с датчиков подвергаются полосовой фильтрации фильтром Баттерворта, подходящим по своим амплитудно-частотным характеристикам, с настройками частот, выделенных из спектра (рис. 6-7).

Рисунок 6 - Амплитудные спектры записей слева и справа от трещины



Рисунок 7 - Амплитудные спектры записей с целой балки для левой и правой точки

В таблице 1 для перемычки с трещиной указано значение декремента затухания δ , который варьируется в пределах 0,033-1,41 и имеет $\overline{\delta}$ =0,501 по трём осям. В таблице 2 для целой перемычки декремент затухания δ имеет меньший порядок. Значение варьируется в пределах от -0,105 до 0,102 ($\overline{\delta}$ =0,014 по трём осям). При этом наличие положительных и отрицательных значений показывает, что отношение амплитуд с датчиков слева и справа от удара меняется вокруг значения 1.

Таблица 1. Перемычка с трещиной. Логарифмический декремент затухания по осям Z, N, E для частот, выделенных из спектра

Частота пика	Ось			
на спектре, Гц	Z	N	E	
9,6	0,539	0,276	0,523	
24	0,505	0,253	0,489	
27,6	0,361	0,775	0,635	
51,6	0,095	0,342	0,311	
55,2	0,091	0,701	0,611	
157,1	1,126	0,432	0,774	
182,3	1,833	0,376	0,813	
190,6	0,877	0,298	0,736	
198	0,202	0,234	0,549	
211	0,528	0,189	0,503	
235	0,445	0,236	0,462	
259	0,555	0,033	0,433	
271	0,642	0,478	0,364	
298,6	0,201	0,412	0,665	
327,3	0,174	0,623	0,334	
371,7	0,486	0,512	0,301	
386,1	0,252	0,742	0,259	

$\bar{\delta}$	0,501		
Среднее	0,552	0,425	0,527
491,6	0,473	0,746	0,522
470	0,270	0,459	0,918
446,3	0,121	0,250	0,415
406,5	1,41	0,267	0,395

Согласно опредленеию логарифмического декрмента затухания [1] чем выше его значение, тем круче аппроксиммирующий график колебания и тем быстрее процесс затухания. Для случая с нарушенной балкой значние больше примерно в $\frac{0,501}{0,014} \approx 36$ раз по сравнению с результатами по целой. Различие полученных значений лог. декремента затухания для целой и нарушенной балок может быть вызвано уменьшением интенсивности волны при прохождении через трещиноватую область.

Таблица 2. Целая перемычка. Логарифмический декремент затухания по осям Z, N, E для частот, выделенных из спектра

Частота пика	Ось			
на спектре, Гц	Z	N	E	
0-5	0,018	0,021	0,042	
20,8	-0,039	0,015	0,017	
42,8	-0,017	-0,02	0,028	
64,7	-0,105	0,004	-0,011	
85,5	0,023	-0,008	-0,010	
108,7	0,016	0,035	0,054	
121,4	0,045	0,041	-0,007	
151,4	0,034	-0,013	0,065	
166,5	-0,011	0,102	0,075	
247,4	-0,005	0,042	0,064	
406,9	0,026	0,054	-0,065	
Среднее	-0,001	0,020	0,023	
δ	0,014			

Заключение

Выявлена зависимость между значениями логарифмического декремента затухания и наличием нарушений в железобетонной балке: значения логарифмического декремента отличаются более чем в 36 раз.

На основе выявленной зависимости рассмотрен подход к вычислению резонансно-волновых и поглощающих характеристик материалов строительных конструкций. Имеется возможность разработать метод дефектоскопии и мониторинга технического состояния зданий и сооружений.

Трудоёмкость применения предложенного подхода заключается в соотне-

сении значений логарифмического декремента колебаний с размерами нарушенной зоны, что требует дальнейших исследований.

Список литературы

- 1. Жаданов В.И. Нестеренко М.Ю., Столповский Г.А., Нестеренко А.М. Исследование поглощающих свойств материала строительных конструкций на примере железобетонной перемычки. Известия ВУЗов. Строительство. 2016. 9 (693): 76-86.
- 2. Нестеренко М.Ю., Нестеренко А.М. Обследование зданий и сооружений методом сейсмического зондирования. <u>Бюллетень Оренбургского научного центра УрО РАН</u>. 2014. <u>2</u>. 5с. [Электр. ресурс] (URL: http://elmag.uran.ru:9673/magazine/Numbers/2014-2/Articles/Nesterenko%20MY-Nesterenko%20AM-2014-2.pdf).
- 3. Котляревский В.А., Сущев С.П., Ларионов В.И. Применение мобильных диагностических комплексов для оценки прочности, устойчивости и остаточного ресурса зданий и сооружений. <u>Безопасность труда в промышленности</u>. 2004. <u>№ 3</u>: 42-45.
 - 4. Клаф Р., Пензиен Дж. Динамика сооружений. М.: Стройиздат, 1979.