ОПРЕДЕЛЕНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ДИФУЗИОННЫХ СВАРНЫХ СОЕДИНЕНИЙ

Майстренко Н.Ю. Оренбургский государственный университет

Обновление и внедрение в производство современных технологий является главной задачей научно-технического прогресса в машиностроительной промышленности. Одной из подобных технологий, при изготовлении составных конструкций РКТ из высокопрочных сплавов титана является применение диффузионной сварки [1]. Традиционные способы производства изделий основаны на использовании метода механической обработки, пайки, сварки плавлением и сборки. Они отличаются низким коэффициентом использования материала, применением сложнейшего механообрабатывающего оборудования и потребностью в задействовании большого количества сборочных единиц оснастки [3]. Это приводит к высоким затратам на изготовления в условиях среднесерийного производства.

Как показывает прогрессивная отечественная и зарубежная практика, использование технологии диффузионной сварки дает возможность получать, при наличии малого инструментария, различные виды сложных конструкций и изделий при значительном уменьшении цены и веса изделий, что особенно важно при производстве летательных аппаратов [2].

Основным преимуществом диффузионной сварки, как и других способов соединения в твердой фазе, является отсутствие плавления. Диффузионная сварка лучше всего протекает при вакууме не ниже 10^{-2} мм.рт. ст [4]. Одно из наиболее существенных достоинств диффузионной сварки — высокие показатели качества получаемых сварных соединений. При корректно выбранном режиме — температуре, давлении и времени сварки.

Целью данной работы является: определение физико-механических характеристик, при комнатной температуре, диффузионных сварных соединений из титанового сплава ВТ23, который широко применяется в конструкциях космической, ракетной, атомной и авиационной техники для изготовления днищ, шаровых баллонов, лонжеронов, шпангоутов, балок, стрингеров и др. силовых конструкций [5].

Определение физико-механических характеристик диффузионных сварных соединений производилось в следующем порядке:

- Определение химического состава исходного материала,
- Изготовление заготовок под сварку из титанового сплава BT23, плита толщиной 10 мм,
 - Диффузионная сварка заготовок из сплава ВТ23,
 - Иготовление образцов,
 - Рентгенографический контроль образцов,
- Механические испытания образцов основного материала из сплава BT23 при комнатной температуре.

Сплав ВТ23 довольно легко обрабатывается давлением и поставляется главным образом в виде листов, он отлично подвергается ковке и штамповке, а так же выделяется высокой технологической пластичностью, что дает возможность при изготовлении из него деталей и узлов задействовать операции обработки давлением [2].

Определение химического состава титанового сплава BT23 плиты толщиной 10 мм производились на оптическом спектрометре FOUNDRY-MASTER в соответствии с ГОСТ 23902-79. В таблице 2 приведено процентное содержание химических элементов сплава BT23 в соответствии с ОСТ 1-90013-81.

Таблица 1 - Процентное содержание химических элементов в исходном материале

AI	Zr	V	Mo	Cr	N_2	O_2	\mathbf{H}_2	Si	Fe	C	Ti	Σ прим
5,79	<0,005	4,73	1,8	1,12	<0,05	<0,15	<0,015	0,0524	0,675	<0,10	85,7	<0,30

Отклонение процентного содержания химических элементов находится в допустимых пределах, следовательно, химический состав исходного материала соответствует ОСТ 1-90013-81.

Внешний вид заготовок под сварку образцов из титанового сплава BT23 толщиной плиты 25мм представлен на рис. 1

Рисунок 1 - Заготовки под сварку встык из титанового сплава BT23

Для исключения возможности потери устойчивости свариваемых заготовок, передачи давления в зону сварки и создания условий локально направленной деформации свариваемого металла в зоне стыка, диффузионную сварку осуществляют в приспособлении.

Для осуществления диффузионной сварки заготовок из титанового сплава BT23 приспособление устанавливается в вакуумную камеру установки диффузионной сварки изображенной на рис. 2

Рисунок 2 - Монтаж приспособления для сварки заготовок в камере установки

Схематический процесс диффузионной сварки: свариваемые заготовки собирают в приспособлении (рис. 3), позволяющем передавать давление в зону стыка, вакуумируют до 10^{-4} мм. рт. ст. и нагревают до температуры сварки $830 \div 880^{0}$. После этого прикладывают сжимающее давление на заданный период времени до ($P \le 2$ кг/мм2) [5]. Охлаждение в вакууме.

Рисунок 3 - Диффузионно-сваренная заготовка встык из титанового сплава ВТ23 в приспособлении поднята из камеры установки

Образцы диффузионных сварных соединений вырезаются на электроэрозионном станке из сваренной плиты таким образом, чтобы стык располагался в центре рабочей части образца. Размеры и типы образцов соответствуют ГОСТ 9651-84. Внешний вид образцов из титанового сплава ВТ23 представлен на рисунках 4, 5

Рисунок 4 - Внешний вид плоских образцов

Рисунок 5 - Внешний вид цилиндрических образцов

Для обнаружения внутренних дефектов металлов методом неразрушающего контроля по ГОСТ 30426-82 и ГОСТ 7512-82 использовался переносной рентгеновский аппарат ERESCO M42.

Выборочно был проведен рентгенографический контроль образцов сварного соединения из титанового сплава ВТ23 на наличие внутренних дефектов и неоднородности. Образец не имеет внутренних дефектов в виде пористости, раковин и трещин. Материал пригоден для дальнейшего проведения исследований.

Статические испытания на растяжение образцов основного материала и образцов диффузионных сварных соединений из титанового сплава ВТ23 проводились на испытательной машине FPZ100/1, технические требования, которой соответствуют ГОСТ 7855-84.

Расхождения значений по прочности на растяжение составляет 931,95 - 1024,16 МПа для плоских образцов (табл. 2) и 996,0 - 1005,9 МПа для цилиндрических (табл. 3).

Диаграмма разрушения (рис. 6 и 7) данных образцов имеет классический вид, места разрыва всех представленных образцов на диаграмме растяжения располагается в зоне пластической деформации образца, с относительным удлинением образцов: 8-11,6% для плоских и 9-10% для цилиндрических образцов.

Таблица 2 — Численные значения статических испытаний плоских образцов на растяжение

№ образца	P _{max} , H	σ _в , МПа	δ,%	
1	37022,9	1024,16	11,60	
2	34771,5	970,21	10,90	
3	33111,6	931,95	8,00	

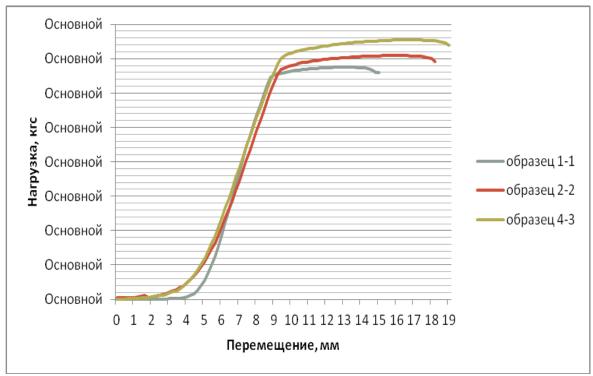


Рисунок 6 - Диаграмма растяжения плоских образцов основного материала из сплава BT23 при комнатной температуре

Таблица 2 – Численные значения статических испытаний цилиндрических образцов на растяжение

№ образца	P _{max} , H	$σ_{\scriptscriptstyle B}$, ΜΠ a	δ,%	
1	27311,6	1005,9	10,0	
2	27661,5	998,2	10,9	
3	27321,4	996,0	9,7	

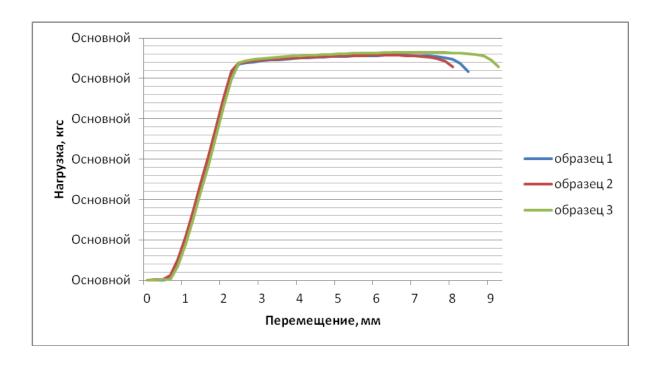


Рисунок 7 - Диаграмма растяжения цилиндрических образцов основного материала из сплава BT23 при комнатной температуре.

В процессе выполнения данной работы для отработки технологии диффузионной сварки были изготовлены образцы из титанового сплава ВТ23 и образцы диффузионных сварных соединений из титанового сплава ВТ23, проведены механические испытания образцов при комнатной температуре. Положительные результаты механические испытаний свидетельствуют, что диффузионная сварка обеспечивает 50-60 % от прочности основного материала. Полученные результаты показали, что диффузионное сращивание в вакууме в отличие от сварки плавлением работает в зоне пластической деформации.

Список литературы

- 1. Крупинин С. Т. Обработка металлов давлением / С. Т. Крупинин, В. И. Соловьев // Металлургия. 2001. № 5. С. 10–17.
- 2. Казак В. Г. Диффузионная сварка титана и свойства сварных соединений / В.Г. Казак, С.Т. Стимский, В.И. Галинич // Машиностроение 2004. N = 4. C. 41–44.
- 3. Иванов В. И., Технология диффузионной сварки / В. И. Иванов, С. Т. Сафиуллин // Минск: Наука и техника, 2011. N_2 9. С. 31—49.
- 4. Дерибас А.А. Диффузионная сварка в машиностроении / А.А. Дерибас, Н.В. Павлов // Сварка в машиностроении. 2013. N_2 7. С. 67–75.;
- 5. Лысак В. И., Диффузионная сварка в вакууме В. И. Лысак, С.Т. Кузьмин, В.И. Станюкович // Перспективные материалы 2001. $N \ge 8$. С. 21–29.